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Abstract. We calculate the electron-phonon scattering rate for an asymmetric double barrier resonant tun-
neling structure based on dielectric continuum theory, including all phonon modes, and show that interface
phonons contribute much more to the scattering rate than do bulk-like LO phonons for incident energies
which are approximately within an order of magnitude of the Fermi energy. The maximum scattering rate
occurs for incident electron energies near the quantum well resonance. Subband nonparabolicity has a
significant influence on electron-phonon scattering in these structures. We show that the relaxation time is
comparable to the dwell time of electrons in the quantum well for a typical resonant tunneling structure.

PACS. 72.10.Di Scattering by phonons, magnons, and other non localized excitations – 63.20.Kr Phonon-
electron and phonon-phonon interactions

1 Introduction

The Double Barrier Resonant Tunneling Structure
(DBRTS) [1,2] is interesting for both scientific and tech-
nological reasons. At a fundamental level the DBRTS pro-
vides a system for testing theories of electron transport,
tunneling and scattering. The DBRTS also offers the ad-
vantages of negative differential resistance, high-frequency
oscillations and rapid switching [3,4]. The rapidly devel-
oping field of eptixial growth has rejuvenated interest in
DBRTS as increasingly high-quality structures are being
fabricated.

The property of negative differential resistance is par-
ticularly useful, allowing rapid switching. A resonant tun-
neling diode is characterised by a current-to-voltage char-
acteristic curve, and, for a resonant bias voltage v0, a
peak exists in this characteristic curve. For a bias volt-
age v > v0, the slope of this curve is negative, and the
degree of negative resistance is quantified by the Peak-to-
Valley Ratio (PVR) of the resonance peak. Understanding
the valley current is thus quite important for designing
better DBRTS.

In general, the valley current can be caused by several
process, including elastic scattering of tunneling electrons
both by impurities and by interface roughness, quasielastic
scattering by acoustic phonons, resonant Γ−X intervalley
tunneling and inelastic scattering by optical phonons [5].
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In particular mechanisms of electron-phonon interactions
and scattering in polar semiconductor DBRTS are being
investigated because of their important contribution at
high temperatures (T > 40 K). Phonon-assisted tunnel-
ing in symmetric DBRTS has been widely investigated.
The first experimental proof of scattering in the valley
current was given by Goldman, Tsui, and Cunningham
[6], who observed a Longitudinal Optical (LO) phonon
satellite in the current-voltage characteristics of a GaAlAs
double barrier diode. Wingreen, Jacobsen and Wilkins [7]
calculated the tunneling current through a resonant tun-
neling structure including electron-phonon interaction in
the Quantum Well (QW) using independent boson mod-
els, and found a sideband in the valley region of the tun-
neling current.

The current-voltage characteristics of DBRTS are in-
vestigated in the presence of a quantizing magnetic field
perpendicular to the barriers in reference [8]. Jonson [9]
solved an approximate model for inelastic resonant tun-
neling in the presence of a boson field. Cai et al. [10]
investigated one-dimensional electron tunneling in an ar-
bitrarily shaped barrier in the presence of electron-optical-
phonon scattering. Chevoir and Vinter [11] calculated the
LO phonon scattering contribution to electron tunneling
through a double barrier diode. Wingreen et al. [12] fur-
ther investigated resonant tunneling transmission prob-
ability for an electron interacting with phonons and
inelastic scattering in resonant tunneling structures.
Turley and Teitsworth [13,14] studied optical phonon
modes, electron-phonon interaction, and phonon-assisted
tunneling in symmetric DBRTS in detail. The effects
of electron-interface-phonon interaction on resonant



114 The European Physical Journal B

tunneling in symmetric double barrier heterostructures
have also been studied in reference [15]. The inelastic scat-
tering effect on electron tunneling through a double bar-
rier resonant tunneling device was also studied by Zou
and Chao [16]. The effects of localized phonon modes on
the current-voltage curves of DBRTS have also been cal-
culated in the presence of large magnetic fields parallel to
the applied electric field in reference [17]. Moreover, a cou-
pled double-quantum-well resonant tunneling structure in
the presence of electron-phonon interaction was also in-
vestigated carefully in reference [18].

Recently, asymmetric heterostructures, such as asym-
metric DBRTS and asymmetric QW structures, have gen-
erated interest due to their special device applications
[19–26]. Optical-phonon modes, electron-phonon interac-
tion and scattering, and polaron effects in asymmetric
QW have been investigated in references [19–21]. Some
important results, such as the frequency-forbidden behav-
ior of the interface optical phonon modes and the anoma-
lous phenomenon of the electron-phonon interaction in
asymmetric QW, have been found [19,20]. Some investiga-
tions further indicate that the negative differential resis-
tance can be tuned when asymmetric barriers are used
in tunneling structure [22]. Asymmetric double barrier
heterostructure may vary the amount of charge accu-
mulation in the QW so that the current-voltage charac-
teristics can be modified [23,24]. Asymmetric tunneling
structures may enhance the resonant peak current [25].
However, to our knowledge, little work has been done
about electron-phonon interaction and scattering and
phonon-assisted tunneling in asymmetric DBRTS in the
presence of electron-phonon interaction in theory, despite
its great theoretical and practical importance at present.
Hence it is worthwhile investigating electron-phonon in-
teraction and scattering and phonon-assisted tunneling in
asymmetric DBRTS. The main purpose of this paper is to
calculate electron-phonon interaction and scattering rates
in asymmetric DBRTS using the dielectric continuum
model. Both interface and confined bulk-like LO phonons
are incorporated. The conduction band nonparabolicity
is also considered. We show that interface phonons con-
tribute more significantly than do bulk-like phonons for
low incident electron energies as well as establishing the
importance of subband nonparabolicity in these calcula-
tions. We also establish a relationship between the electron
dwell time in the resonant tunneling structure and the re-
laxation time for the system. These results are important
for analyzing and understanding scattering processes and
decoherence in DBRTS and in device applications of res-
onant tunneling diodes.

2 Theory

2.1 Transmission probability and electron
wavefunctions across arbitrary potential field

The conduction band edge of DBRTS is curved for a
nonzero bias voltage due to the accumulation of elec-
trons in the QW via resonant tunneling; hence the po-

tential function v(z) has a complicated form. In order
to solve the electron states in this complicated poten-
tial field, let us now consider an arbitrary potential field
v(z) within the region 0 ≤ z ≤ L in the z direction.
The transfer-matrix method is used to solve the single-
electron effective-mass Schrödinger equation effectively for
arbitrary v(z). The transmission probability and electron
envelope wavefunctions can be obtained conveniently. Our
methods are briefly summarized as follows.

First, we select an integer N > 0 and divide the inter-
val [0, L] into N equal subintervals with the same length
a = L/N . Because the potential may be treated as con-
stant over each subinterval as long as the length a is
very small, for instance, 5 Å in GaAs, the solution of the
one-dimensional Schrödinger equation is given in the jth
subinterval as a superposition of plane waves:

ψj(zj) = Aj exp(kjzj) +Bj exp(−kjzj), (0 ≤ zj ≤ a),
(2.1)

where the first term is for left-to-right transfer, and the
second for right-to-left. The z component of the complex
wave vector, kj , in equation (2.1) is given by

kj =

[
2mj(Ez)(vj −Ez)

~2

]1/2

, j = 1, 2, · · · , N. (2.2)

Here Ez is the electron energy in the z direction. vj and
mj(Ez) are the potential and the effective mass associated
with subinterval j, and zj is distance measured from the
left-hand side of the jth subinterval. The j values increase
as the structure is traversed from the left (z = 0) to the
right (z = L). Including the subband nonparabolicity, the
electron effective mass mj(Ez) can be given as [21]

mj(Ez) = mj [1− (vj −Ez)/Egj ], (2.3)

where Egj is the energy gap between the conduction and
the light-hole valence bands in the jth subinterval. The
electron band mass mj is constant in the jth subinterval.

Using the Bastard [27] boundary conditions at the
boundary between subintervals j and j+1, one can derive
the following matrix formula relating successive A and B
plane-wave coefficients, namely,(

Aj+1

Bj+1

)
= Mj

(
Aj
Bj

)
, (2.4)

where the matrix Mj is defined as

Mj =
1

2

(
(1 + αj) exp(kja) (1− αj) exp(−kja)
(1− αj) exp(kja) (1 + αj) exp(−kja)

)
, (2.5)

with

αj =
kjmj+1(Ez)

kj+1mj(Ez)
· (2.6)

From equations (2.1–2.6), we obtain the electron enve-
lope wavefunction in the entire region [0, L] if the coeffi-
cients A1 and B1, or equivalently, AN and BN , are known.
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The plane-wave coefficients A1 and B1 in the first subin-
terval and the coefficients AN and BN in the Nth subin-
terval have the following matrix relation:(

AN
BN

)
= Mtot

(
A1

B1

)
, (2.7)

where

Mtot =

(
M11 M12

M21 M22

)
= MN−1 ·MN−2 · · ·M2 ·M1. (2.8)

One can prove from equations (2.5, 2.8) the following re-
sults

det(Mj) = αj ,

det(Mtot) = αN−1 · αN−2 · · ·α2 · α1 =
k1mN (Ez)

kNm1(Ez)
·

(2.9)

The above equations (2.1–2.9) are universal for an arbitary
potential field. Let us now briefly discuss their applications
for electron tunneling through asymmetric DBRTS in two
important cases.

2.1.1 Emitter-to-collector tunneling

The solution of the Schrödinger equation in the j = 1
subinterval can be written as

ψ1(z1) = A1 exp(k1z1) +B1 exp(−k1z1). (2.10)

For left-to-right transfer, we can assumeA1 = 1 andBN =
0 for convenience. Thus, we have

ψN (zN) = AN exp(kNzN), (2.11)

and (
AN
0

)
=

(
M11 M12

M21 M22

)(
1
B1

)
. (2.12)

We can obtain from equation (2.12)

AN =
det(Mtot)

M22
=
k1mN (Ez)

kNm1(Ez)

1

M22
,

B1 = −
M21

M22
·

(2.13)

The transmission probablity T (Ez), which is defined as
the ratio of the transmitted particle flux divided by the
incident particle flux, is given by

T (Ez) =
mN (Ez) | k1 |

| kN | m1(Ez)

1

|M22 |2
· (2.14)

The electron envelope wavefunction ψ(z) can be normal-
ized according to the following formula∫ L

0

| ψ(z) |2 dz = 1. (2.15)

2.1.2 Collector-to-emitter tunneling

In this case, we can assume A1 = 0 and BN = 1 for
convenience. The solutions of the Schrödinger equation in
the j = 1 and j = N subintervals are given as

ψ1(z1) = B1 exp(−k1z1),
ψN (zN ) = AN exp(kNzN) + exp(−kNzN).

(2.16)

The coefficients AN and B1 can be determined as follows,

AN =
M12

M22
,

B1 =
1

M22
,

(2.17)

and the transmission probability T (Ez) satisfies for-
mula (2.14). Normalization of the electron envelope wave-
function ψ(z) is established by equation (2.15).

2.2 Electron-phonon interaction and scattering in
asymmetric DBRTS

Within the framework of the dielectric continuum model,
optical phonon modes and electron-phonon interaction
Fröhlich-like Hamiltonian He−ph can be conveniently ob-
tained. The electron-phonon scattering rate W can be cal-
culated according to the Fermi golden rule. For an asym-
metric DBRTS we can obtain the scattering rate due to
interface phonons as follows

W (i→f)(ki, Ez)=
e2

16πε0

∑
m

∫
d2k

1

ωm(k)k
| Fm(k) |2

×δ(εi−εf ± ~ωm(k))

(
Nph+

1

2
∓

1

2

)
δki,kf∓k,

(2.18)

and the rate due to confined LO phonons is

W (i→f)(ki, Ez)=
e2

2πε0

∑
ν

jmax∑
j=1

ωLν

Tν

×

(
1

ε∞ν
−

1

ε0ν

)
| Fif (qjν) |2

×

∫
d2k

1

k2+(qjν)2
δ(εi−εf ± ~ωLν)

×

(
Nph+

1

2
∓

1

2

)
δki,kf∓k,

(2.19)

where Nph is the phonon occupation number and can be
determined by the Planck distribution [28] as

Nph =
1

exp(~ωp/kBT )− 1
· (2.20)

Here ~ωp is the phonon energy, T is the temperature and
kB is Boltzmann’s constant. In equations (2.18, 2.19),
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the upper sign is for phonon absorption and the lower
is for emission, and Fm(k) and Fif (qjν) are the overlap
integrals defined as

Fm(k) = (Λ∆2)−1/2

∫
Ω

ψ∗f (z)fm(k, z)ψi(z)dz, (2.21)

where Ω refers to the entire DBRTS region, and

Fif (qjν) =

∫
layer ν

ψi(z) sin
[
qjν(z − z0ν)

]
ψ∗f (z)dz,

(2.22)

with εi and εf the energies of the initial and final elec-
tron states, respectively. We designate ψi and ψf as the
electron envelope wavefunctions in the initial and final
states. For phonon-assisted tunneling, ψi can be calcu-
lated according to the transfer-matrix method described
in Section 2.1. Since the width of the final resonant state
is very narrow, we can treat the final state as a completely
localized state in the well [11,13,14,29]. The electron en-
ergy ε can be written as the sum of parallel and transverse
components:

ε =
~2k2

e

2m∗
+Ez. (2.23)

The above equations are exact and show that scattering
rates are functions of the in-plane wave vector ki and en-
ergy Ez in the z direction of the initial electron state.

Since the electron is constrained to move along the z
direction and its motion in the plane of the interfaces will
be suppressed due to nonzero bias voltage in the z direc-
tion in DBRTS, the electron energy Ez in the z direction
is significantly larger than the energy E‖ = ~2k2

i /2m
∗

in the plane of the interfaces, where ki is the in-plane
wave vector. For simplicity, we can assume that the elec-
tron energy E‖ is small relative to Ez. In this case, it
has been shown from the theory that the scattering rate
W (ki, Ez) depends weakly on ki [13]. The weak depen-
dence of W (ki, Ez) on ki has also been further discussed
for confined phonon modes in reference [14]. The scatter-
ing rate W (ki, Ez) depends strongly on Ez since the over-
lap integral Fm or Fif has a sensitive Ez dependence. On
the contrary, ki only occurs in the delta function, and then
gives an indirect influence on Fm or Fif . We thus have
W (ki, Ez)

.
= W (0, Ez) ≡ W (Ez). For phonon-assisted

tunneling in an asymmetric DBRTS, the scattering rate
W (Ez) for phonon emission can be calculated according
to the formula,

W (Ez) =
e2

8ε0

8∑
m=1

1

ωm(kp)
|Fm(kp)|

2

×

(∣∣∣∣∣ ~2

m∗
kp + ~

dωm

dk

∣∣∣∣
k=kp

∣∣∣∣∣
)−1

(Nph + 1) ,

(2.24)

where kp satisfies

~2

2m∗
k2
p + ~ωm(kp)− (Ez −Ew) = 0 (2.25)

Spacer Layer

GaAs

GaAs

Spacer Layer

GaAs

Al    Ga    As0.3 0.7

Al    Ga    As0.25 0.75

Fig. 1. Asymmetric double barrier resonant tunneling struc-
ture GaAs/Al0.25Ga0.75As/GaAs/Al0.3Ga0.7As/GaAs with
thickness 1000 Å/30 Å/60 Å/20 Å/1000 Å.

for interface phonons. Similarly the scattering rate for con-
fined bulk-like LO phonon emission,

W (Ez) =
m∗e2

~2ε0

∑
ν=2,3,4

jmax∑
j=1

ωLν

Tν

×

(
1

ε∞ν
−

1

ε0ν

)
| Fif (qjν) |2

(kνp)2 + (qjν)2
(Nph + 1) ,

(2.26)

with

kνp = [2m∗(Ez −Ew − ~ωLν)]1/2/~. (2.27)

In equations (2.25, 2.27), (Ez − Ew) is the energy dif-
ference between the incident state and the final resonant
state localized in the well. The definitions of qjν , Tν , Λ, ∆,
fm(k, z), and z0ν , provided in reference [20], are lengthy
and not repeated here. Electron-phonon scattering in the
emitter and collector regions have been ignored because
the overlap integrals between the emitter (collector) and
the final localized resonant state in the well are negligible.

3 Numerical results and discussion

As an application of our theory given in Section 2, we
have performed numerical calculations for the transmis-
sion coefficient T (Ez), electron envelope wavefunction and
electron-phonon scattering rate W corresponding to the
asymmetric DBRTS shown in Figure 1. We employ the
physical parameters obtained in reference [19] and the en-
ergy gap Eg = 1424+1266x+260x2 meV for AlxGa1−xAs
material.

Figure 2 shows the transmission coefficient T (Ez) as
a function of the incident electron energy Ez for the dif-
ferent bias voltages v = 0, 150 and 200 mV, respectively.
We can see from Figure 2 that there are two transmission
peaks which are localized at Ez = 57.5 and 233.6 meV for
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Fig. 2. The transmission coefficient T vs. the incident electron
energy Ez for the asymmetric DBRTS shown in Figure 1 at the
bias voltages (i) v = 0, (ii) v = 200, (iii) v = 150 and (iv) v =
150 mV where the nonparabolicity has been included in (iii)
only. For (i), (ii) and (iv), the nonparabolicity has been ignored.
The peaks of curve occur at (i) 57.5 meV and 233.6 meV. The
peak occurs at (ii) 128.0 meV. The peak of curve (iii) occurs
at 143.7 meV, and the peak of curve (iv) occurs at 154.0 meV.

a bias voltage v = 0. The first transmission peak occurs
for an incident energy equal to the resonance energy of the
well. The second transmission peak occurs for an incident
energy which is larger than the energy of the first barrier.
However, a resonance energy of 233.6 meV exists because
the electron is reflected by the second barrier and also un-
dergoes a quantum reflection from the first barrier, which
is analogous to the Ramsauer effect [30]. The peak shifts
towards low energy as the bias voltage increases. For in-
stance, the second peak is moved to Ez = 154 meV and the
first level E1 = Ew

.
= −24.05 meV is lower than the con-

duction band edge of the emitter, which becomes a fully
confined state in the well at the voltage v = 150 mV. The
corresponding electron envelope wavefunctions are shown
in Figure 3. The position of the peak shifts to lower en-
ergy as the bias voltage increases again. For example, the
second peak is moved to Ez = 128 meV in the case of
v = 200 mV. Moreover, Figure 2 also clearly indicates
that the subband nonparabolicity has a large influence on
the incident electron state. When considering the conduc-
tion band nonparabolicity, the value of the peak decreases
slightly and the position of the peak moves again to lower
energy.

In Figure 3, we show the spatial structure of the elec-
tron envelope wavefunctions on the confined state with
Ew = −24.05 meV in the well, the second resonant state
with Ez = 154 meV and the off-resonant state with
Ez = 200 meV at the bias v = 150 mV for the asym-
metric DBRTS depicted in Figure 1. The figure indicates
that the resonant state is mostly contained within the QW
whereas the opposite is true for the off-resonant state. The
overlap integral between the confined state and the reso-
nant state is larger than that between the confined state
and the off-resonant state.

In order to study the properties of the electron-phonon
interaction in asymmetric DBRTS, we investigate the dis-
persion of interface modes, the electron-interface-phonon
interaction Hamiltonian characteristic as a function of
wavenumber k and coordinate z and the electron-phonon

150
z (A)

o

0
-150 0

2

1|  
|

ψ
2

Fig. 3. Spatial dependence of the normalized electron en-
velope wavefunction |ψ(z)|2 throughout the same DBRTS as
in Figure 1 with the bias v =150 mV for electron energies:
Ew = −24.05 meV (the confined state in the well represented
by a solid line), Ez = 154 meV (the second resonant state rep-
resented by a dashed line) and Ez = 200 meV (the off-resonant
state represented by a dash-dot line). The scale is 10−2 Å−1

for the solid line and 10−3 Å−1 for the dashed and dash-dot
lines.

scattering for the same asymmetric DBRTS as in Figure 1.
Our numerical calculations indicate (i) that the disper-
sion of the interface modes is apparent for k < 0.1 Å−1,
(ii) that the electron-interface-phonon interaction Hamil-
tonian is a very complicated function of wavenumber k,
and (iii) that the contribution of the four lower-frequency
interface modes to the scattering rate is much smaller than
that of the four higher-frequency interface modes. Figure 4
shows the scattering rate divided by (Nph+1) as a function
of the incident electron energy Ez for the same structure
as in Figure 1 at the bias voltage v = 150 mV. We can see
from Figure 4 that electron-interface-phonon scattering is
much more important than electron-LO-phonon scatter-
ing for low incident electron energy Ez which is approxi-
mately one order of magnitude greater than the Fermi en-
ergy level. In Figure 4 the intersection between the curves
for the two scattering rates occurs at Ez

.
= 162 meV,

which is approximately within one order of magnitude of
the Fermi energy EF = 42.5 meV corresponding to the
doping concentration n = 1× 1018 cm−3 at the tempera-
ture T = 300K. The electron-LO-phonon scattering is ev-
idently much more important for Ez > 162 meV. Figure 4
also clearly shows that the total scattering rate has a max-
imum at Ez

.
= 154 meV. The reason is simple. We know

from Figures 2 and 3 that Ez = 154 meV corresponds
to the second resonant level at v = 150 mV. The over-
lap intergral between the confined state in the well and
the second resonant state has the largest value. Hence,
the electron-phonon scattering rate has a maximum at
Ez = 154 meV according to equations (2.21, 2.22).

The relationship between the total scattering rate and
the different bias voltage has also been investigated. Fig-
ure 5 clearly shows that the influence of the bias voltage on
the electron-phonon scattering rate has two aspects. One
is the position of the scattering peak moves to the low en-
ergy when the voltage increases. The other is the value of
the peak decreases if the voltage increases. We know from
Figure 2 that the second resonant energy level decreases
when the voltage increases. Hence, the peak scattering
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Fig. 4. The electron-phonon scattering rate W divided by
(Nph + 1) as a function of the incident electron energy Ez
for the structure in Figure 1 at the bias voltage v = 150 mV.
The dash-dot line represents the contribution of the interface
phonons, and the dashed line represents the confined bulk-like
LO phonons. The solid line represents the total scattering rate.
The peaks occur in close proximity to the quantum well reso-
nance.

E  (meV)z

0.05
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W
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Fig. 5. The total scattering rate W divided by (Nph + 1) as
a function of the incident electron energy Ez for the structure
in Figure 1 at the voltage v = 150 mV (the solid line ignores
nonparabolicity and the dashed line includes nonparabolicity)
and v = 200 mV (the dash-dot line ignores nonparabolicity).

rate shifts towards lower energy, and the decreasing peak
value is due to the decreasing overlap integral between the
incident electron state and the confined state in the well
as the bias voltage increases. In order to further investi-
gate the influence of the conduction band nonparabolic-
ity on the electron-phonon scattering, we have calculated
the electron-phonon scattering rate in considering the sub-
band nonparabolicity for the same DBRTS as in Figure 1
at the bias voltage v = 150 mV in Figure 5. This figure
shows that the subband nonparabolicity has a large influ-
ence on the electron-phonon scattering, which is similar to
the influence of the nonparabolicity on the transmission
coefficient shown in Figure 2.

It is worthwhile to further analyse the physical implica-
tions with respect to the two transmission peaks shown in
Figure 2. First, we know from the coherent tunneling the-
ory [1] that the coherent tunneling current in DBRTS can
be completely determined by the height of the resonant
level, the peak value of the transmission coefficient T (Ez)
on the resonant level and the position of the transmission
peak. Hence, the two transmission peaks of Figure 2 will
have a significant influence on the coherent tunneling pro-
cess in our DBRTS. They will directly control the coher-

ent tunneling current-voltage characteristic, which is very
important for designing better resonant tunneling diodes.
Moreover, we know from Figures 4 and 5 that the electron-
phonon scattering rate has its maximum if the incident
electron energy is near the second resonant level. This is
also very important for further understanding the phonon-
assisted tunneling process in DBRTS, which has attracted
much attention in recent years [6–18].

4 Summary

In this paper, we present a general theory for electron
states in an arbitary potential field by using a trans-
fer matrix method. As an application of our theory,
the electron transmission coefficient and the envelope
wavefunction in asymmetric DBRTS are calculated. The
electron-phonon interaction and scattering in an asym-
metric DBRTS is studied based on the dielectric contin-
uum model, in which all of the phonon modes are included.
The conduction band nonparabolicity is also considered.
We give our numerical results for the electron trans-
mission coefficient, the electron envelope wavefunction
and the electron-phonon scattering rate in asymmetric
DBRTS GaAs/Al0.25Ga0.75As/GaAs/Al0.3Ga0.7As/GaAs
with thickness 1000 Å/30 Å/60 Å/20 Å/1000 Å at differ-
ent bias voltages. The importance of the different phonon
modes is analyzed. Our main conclusions are summarized
as follows.

1. The electron-phonon scattering rate, the electron
transmission probability and the electron envelope
wavefunctions depends sensitively on the incident elec-
tron energy and on the bias voltage.

2. The electron-phonon scattering rate is maximised for
the incident electron energy near the second resonant
level, which is very important for understanding the
phonon-assisted tunneling process in DBRTS.

3. Higher-frequency interface modes are much more im-
portant than lower-frequency interface modes for the
electron-phonon interaction and scattering in DBRTS.

4. Interface modes are much more important than con-
fined bulk-like LO phonons when the incident electron
energy is small. Otherwise, the confined LO phonons
become much more significant if the incident electron
energy is large.

5. The subband nonparabolicity has a significant influ-
ence on the electron transmission and the electron-
phonon scattering in DBRTS.

The scattering rates observed in Figures 4 and 5 reveal
that, for the structure in Figure 1, the relaxation time is on
the order of 10 to 100 ps. It is interesting to compare this
timescale with the dwell time in the DBRTS. The dwell
time in a symmetric Al0.4Ga0.6As/GaAs/Al0.4Ga0.6As
with a well height of 50 Å is also on the order of 10 to
100 ps [31]. Although a different result for the dwell time
is expected for an asymmetric structure, the electron dwell
time and the relaxation time are comparable.
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The theoretical results obtained in this paper are use-
ful for further investigations of phonon-assisted tunneling
in DBRTS, particularly with respect to decoherence and
scattering in resonant tunneling devices.
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